
SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

PROGRAMMING IN C

Class : UG Computer Science

Ms. P. GUNAVATHI

Assistant Professor 
Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH



MANAGING INPUT AND OUTPUT 
OPERATIONS

Header Files

Program that uses standard input output function must contain the 
statement #include <stdio.h>

The file name stdio.h is an abbreviation for standard input – output 
header file.

Reading and writing a Character:

Input operation is reading a character from the standard input unit 
(keyboard).

Output operation is writing it to the standard output unit(Screen).



MANAGING INPUT AND OUTPUT OPERATIONS

Reading a Character:

It is used to accept a character in a C program.

Done by using the function getchar. 

getchar():

When getchar() function will be encountered by C compiler while executing
a program, the program will wait for the user to press a key from the 
keyboard.

Syntax:

Variable_name= getchar();

Variable name 

Example:

char name;

Valid C name. Declared as char type.

name = getchar();



MANAGING INPUT AND OUTPUT OPERATIONS
Writing a Character:

It is used to accept a character in a C program.

Done by using the function putchar. 

putchar():

The function putchar() writes a single character, one at a time to the 
standard output device.

When this statement is executed, the stored character will be 
displayed on the monitor.

Syntax:

putchar(Variable_name );

Variable name 

Example:

answer = ‘y’;

Type char variable containing a character.

putchar (answer);



MANAGING INPUT AND OUTPUT 
OPERATIONS

Reading a Character: 

Example program: 

#include<stdio.h> 

int main()

{

char ch;

printf(“Enter a character”); 

ch=getch();

printf(“The entered character is:”); 

putchar(ch);

return 0;

}



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

When formatted input is required:

When need to input numerical data which may required in calculations.

When enter key itself is a part of the data.

When need to input data in a particular format.

The scanf() function is used to input data in a formatted manner.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

scanf() function is used to give data to the variable using keyboard.

Used to input data in a formatted manner. 

Syntax:

scanf(“control string”, &variable1, &variable2….&variable n);

In C to represent an address of any location an ampersand (&) is used.

Control string Specifies the field format in which the vales of variable
are to be stored. Each format must be preceded by %

Variable Specify the address of location where the data is stored. 

Variables separated by commas.

Control string also known as format string.

Control string contains field specifications.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

It may include:

Field (or format) specifications, consisting of
The conversion character %,
a data type character (or type specifier)

An optional number specifying the field width.

Blanks, tabs, or newlines.

The data type character indicates the type of data that is to be assigned to 
the variable.

The field width specifier is optional.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

Format specifiers.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

Formatting integer numbers:

The field specification for reading an integer number is: %wd

The % sign A conversion specification follows.

w Specifies the field width of the number to be read.

d Specifies data type, indicates that the number to be read is in integer 
mode.

Example:

scanf(“%2d, &num1);

This statement is used to read an integer data of width 2.

Input: 45678

num1 will be assigned 45 (because of %2d).



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

Formatting integer numbers:

Example:

scanf(“%d”, &num1);

This statement is used to reads an integer data and assigns to variable num1.

Input: 45678

num1 will be assigned 45678



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

Inputting Real numbers:

Example:

scanf(“%f ”, &num1);

This statement is used to reads a floating point data and assigns to variable 
num1.

Input: 45.678

num1 will be assigned 45.678 

Inputting Character Strings:



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Inputting character strings:

%ws or %wc 

Example:

scanf(“%4s”, &name);

This statement is used to reads a string of data and assigns to variable name.

Input: good

name will be assigned good. 

Example:

scanf(“%c”,&name);

This statement is used to reads a single character of data and assigns to variable name.

Input: a

Name will be assigned a.



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Reading Mixed data type:

Use one scanf() statement to input a data line containing mixed mode data. 

Example:

scanf(“%d %c %f %s”, &count, &code, &ratio, &name);

Input: 20 a 5.46 world



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input 

Example Program:

#include<stdio.h> 

int main()

{

int num;

float value; 

char ch;

char name[8]; 

printf(“Enter the values”);

scanf(“%d %f %c %s”, &num , &value, &ch, &name);

printf(“Entered %d and %f and %c and %s”, num, value, ch, name); 

return 0;

}



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Example Program:

Input : 55 78.656 a computer

Output: Entered 55 and 78.656 and a and computer



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Output

printf() statement is used to display the result on screen. 

Syntax:

printf(“control string”, variable1, varible2….variable n);

Control String consists of three types of items:

Characters that will be printed on the screen as they appear.

Format specifications that define the output format for display of 
each item.

Escape sequence characters such as \n, \ t and \b.



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:

#include<stdio.h> 

Void main()

{

int num; /*Declaration*/

num = 10; /*Initialization*/ (Compile time initialization) 

printf(“%d”, num);

}



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:

#include<stdio.h> 

Void main()

{

int num; /*Declaration*/

scanf(“%d”, &num); /*Initialization*/ (Run time initialization) 

printf(“%d”, num);

}



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Output



FLOW CHARTS
Flowchart

Flowchart is a graphical representation of an algorithm.

Flowcharts use special shapes to represent different types of 
actions or steps in a process.

Programmers often use it as a program-planning tool to solve a 
problem.

It makes use of symbols which are connected among them to 
indicate the flow of information and processing.

Lines and arrows shows the sequence of the steps, and the 
relationships among them.



FLOW CHARTS
Flowchart Symbols

There are 6 basic symbols commonly used in flowcharting:

1.Terminal

2.Process 

3.input/output 

4.Decision 

5.Connector 

6.Predefined Process

Common Flowchart symbols:

Rectangle Shape – Represents a process

Oval Shape – Represents the start and end

Diamond Shape – Represents a decision 

Parallelogram – Represents input/output



FLOW CHARTS
Flowchart



DECISION MAKING AND BRANCHING

Decision making statement:

The decision making statements are:

Simple if statement

If….else statement

Nested if…else statement

Else if ladder

Switch statement

Conditional operator statement

Goto statement

These statements are known as decision-making statements.

These statements ‘control’ the flow of execution they are also known as 
control statements.



DECISION MAKING AND BRANCHING

Decision making statement:

Decision making statements are used to skip or execute a group of 
statements based on the results of some condition.



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

The if statement is used to control the flow of execution of 
statements.

If statement execute or skip one statement or group of 
statements for a particular condition.

General form: 

if(text condition)

{

statement block;

}

next statement;



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

When this statement is executed, the computer first evaluates 
the value of the test condition.

If the value is true statement block and next statement are 
executed sequentially.

If the value is false, statement block is skipped and execution 
starts from the next statement.



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

Rules:

The brackets around the test condition are must.

Test condition must be relational or logical expression.

Statement block is called body of the if statement and it 
contains one or more statements.

The opening and closed brackets {} are must if the statement 
block contains more than one statement. Else optional.



DECISION MAKING WITH SIMPLE IF STATEMENT:
Example Program:

#include<stdio.h>

Void main()

{

int mark; 

char grade;

scanf(“%d %c”, &mark, &grade);

if(grade==‘A)

{

mark=mark+10;

}

printf(“%d”, mark);

}


