
SRI AKILANDESWARI WOMEN’S COLLEGE, WANDIWASH

PROGRAMMING IN C

Class : UG Computer Science

Ms. P. GUNAVATHI

Assistant Professor 
Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH



MANAGING INPUT AND OUTPUT 
OPERATIONS

Header Files

Program that uses standard input output function must contain the 
statement #include <stdio.h>

The file name stdio.h is an abbreviation for standard input – output 
header file.

Reading and writing a Character:

Input operation is reading a character from the standard input unit 
(keyboard).

Output operation is writing it to the standard output unit(Screen).



MANAGING INPUT AND OUTPUT OPERATIONS

Reading a Character:

It is used to accept a character in a C program.

Done by using the function getchar. 

getchar():

When getchar() function will be encountered by C compiler while executing
a program, the program will wait for the user to press a key from the 
keyboard.

Syntax:

Variable_name= getchar();

Variable name 

Example:

char name;

Valid C name. Declared as char type.

name = getchar();



MANAGING INPUT AND OUTPUT OPERATIONS
Writing a Character:

It is used to accept a character in a C program.

Done by using the function putchar. 

putchar():

The function putchar() writes a single character, one at a time to the 
standard output device.

When this statement is executed, the stored character will be 
displayed on the monitor.

Syntax:

putchar(Variable_name );

Variable name 

Example:

answer = ‘y’;

Type char variable containing a character.

putchar (answer);



MANAGING INPUT AND OUTPUT 
OPERATIONS

Reading a Character: 

Example program: 

#include<stdio.h> 

int main()

{

char ch;

printf(“Enter a character”); 

ch=getch();

printf(“The entered character is:”); 

putchar(ch);

return 0;

}



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

When formatted input is required:

When need to input numerical data which may required in calculations.

When enter key itself is a part of the data.

When need to input data in a particular format.

The scanf() function is used to input data in a formatted manner.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

scanf() function is used to give data to the variable using keyboard.

Used to input data in a formatted manner. 

Syntax:

scanf(“control string”, &variable1, &variable2….&variable n);

In C to represent an address of any location an ampersand (&) is used.

Control string Specifies the field format in which the vales of variable
are to be stored. Each format must be preceded by %

Variable Specify the address of location where the data is stored. 

Variables separated by commas.

Control string also known as format string.

Control string contains field specifications.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

It may include:

Field (or format) specifications, consisting of
The conversion character %,
a data type character (or type specifier)

An optional number specifying the field width.

Blanks, tabs, or newlines.

The data type character indicates the type of data that is to be assigned to 
the variable.

The field width specifier is optional.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

Format specifiers.



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

Formatting integer numbers:

The field specification for reading an integer number is: %wd

The % sign A conversion specification follows.

w Specifies the field width of the number to be read.

d Specifies data type, indicates that the number to be read is in integer 
mode.

Example:

scanf(“%2d, &num1);

This statement is used to read an integer data of width 2.

Input: 45678

num1 will be assigned 45 (because of %2d).



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input

Formatting integer numbers:

Example:

scanf(“%d”, &num1);

This statement is used to reads an integer data and assigns to variable num1.

Input: 45678

num1 will be assigned 45678



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Input 

Inputting Real numbers:

Example:

scanf(“%f ”, &num1);

This statement is used to reads a floating point data and assigns to variable 
num1.

Input: 45.678

num1 will be assigned 45.678 

Inputting Character Strings:



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Inputting character strings:

%ws or %wc 

Example:

scanf(“%4s”, &name);

This statement is used to reads a string of data and assigns to variable name.

Input: good

name will be assigned good. 

Example:

scanf(“%c”,&name);

This statement is used to reads a single character of data and assigns to variable name.

Input: a

Name will be assigned a.



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Reading Mixed data type:

Use one scanf() statement to input a data line containing mixed mode data. 

Example:

scanf(“%d %c %f %s”, &count, &code, &ratio, &name);

Input: 20 a 5.46 world



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input 

Example Program:

#include<stdio.h> 

int main()

{

int num;

float value; 

char ch;

char name[8]; 

printf(“Enter the values”);

scanf(“%d %f %c %s”, &num , &value, &ch, &name);

printf(“Entered %d and %f and %c and %s”, num, value, ch, name); 

return 0;

}



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Input

Example Program:

Input : 55 78.656 a computer

Output: Entered 55 and 78.656 and a and computer



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Output

printf() statement is used to display the result on screen. 

Syntax:

printf(“control string”, variable1, varible2….variable n);

Control String consists of three types of items:

Characters that will be printed on the screen as they appear.

Format specifications that define the output format for display of 
each item.

Escape sequence characters such as \n, \ t and \b.



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:

#include<stdio.h> 

Void main()

{

int num; /*Declaration*/

num = 10; /*Initialization*/ (Compile time initialization) 

printf(“%d”, num);

}



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:

#include<stdio.h> 

Void main()

{

int num; /*Declaration*/

scanf(“%d”, &num); /*Initialization*/ (Run time initialization) 

printf(“%d”, num);

}



MANAGING INPUT AND OUTPUT 
OPERATIONS

Formatted Output



FLOW CHARTS
Flowchart

Flowchart is a graphical representation of an algorithm.

Flowcharts use special shapes to represent different types of 
actions or steps in a process.

Programmers often use it as a program-planning tool to solve a 
problem.

It makes use of symbols which are connected among them to 
indicate the flow of information and processing.

Lines and arrows shows the sequence of the steps, and the 
relationships among them.



FLOW CHARTS
Flowchart Symbols

There are 6 basic symbols commonly used in flowcharting:

1.Terminal

2.Process 

3.input/output 

4.Decision 

5.Connector 

6.Predefined Process

Common Flowchart symbols:

Rectangle Shape – Represents a process

Oval Shape – Represents the start and end

Diamond Shape – Represents a decision 

Parallelogram – Represents input/output



FLOW CHARTS
Flowchart



DECISION MAKING AND BRANCHING

Decision making statement:

The decision making statements are:

Simple if statement

If….else statement

Nested if…else statement

Else if ladder

Switch statement

Conditional operator statement

Goto statement

These statements are known as decision-making statements.

These statements ‘control’ the flow of execution they are also known as 
control statements.



DECISION MAKING AND BRANCHING

Decision making statement:

Decision making statements are used to skip or execute a group of 
statements based on the results of some condition.



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

The if statement is used to control the flow of execution of 
statements.

If statement execute or skip one statement or group of 
statements for a particular condition.

General form: 

if(text condition)

{

statement block;

}

next statement;



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

When this statement is executed, the computer first evaluates 
the value of the test condition.

If the value is true statement block and next statement are 
executed sequentially.

If the value is false, statement block is skipped and execution 
starts from the next statement.



DECISION MAKING AND BRANCHING

Decision making with simple if statement:

Rules:

The brackets around the test condition are must.

Test condition must be relational or logical expression.

Statement block is called body of the if statement and it 
contains one or more statements.

The opening and closed brackets {} are must if the statement 
block contains more than one statement. Else optional.



DECISION MAKING WITH SIMPLE IF STATEMENT:
Example Program:

#include<stdio.h>

Void main()

{

int mark; 

char grade;

scanf(“%d %c”, &mark, &grade);

if(grade==‘A)

{

mark=mark+10;

}

printf(“%d”, mark);

}


