PROGRAMMING IN C
Class : UG Computer Science

Ms. P. GUNAVATHI

Assistant Professor
Department of Computer Science

SWAMY ABEDHANADHA EDUCATIONAL TRUST, WANDIWASH



MANAGING INPUT AND OUTPUT
OPERATIONS

Header Files

= Program that uses standard input output function must contain the
statement #include <stdio.h>

= The file name stdio.h Is an abbreviation for standard input — output
header file.

Reading and writing a Character:

= Input operation is reading a character from the standard input unit
(keyboard).



MANAGING INPUT AND OUTPUT OPERATIONS
Reading a Character:

= Done by using the function getchar.

getchar():

When getchar() function will be encountered by C compiler while executing

a program, the program will wait for the user to press a key from the
keyboard.

Syntax:

Variable name = getchar();
Variable name —, Valid C name. Declared as char type.

Example:

char name;
name = getchar();



MANAGING INPUT AND OUTPUT OPERATIONS
Writing a Character:

It Is used to accept a character in a C program.
= Done by using the function putchar.
putchar():

= The function Putchar() writes a single character, one at a time to the
standard output device.

=When this statement Is executed, the stored character will be
displayed on the monitor.

Syntax:

putchar(Variable name );
Variable name — Type char variable containing a character.
Example:

answer = y’;

putchar (answer);



MANAGING INPUT AND OUTPUT

OPERATIONS
Reading a Character:

Example program:
#include<stdio.h>
Int main()

{

char ch;
printf(“Enter a character”);

ch=getch();

printf(““The entered character is:”);
putchar(ch);

return O;

}



MANAGING INPUT AND OUTPUT
OPERATIONS

Formatted Input

When formatted input is required:

»\When need to input numerical data which may required in calculations.
»When enter key itself is a part of the data.

»\When need to input data in a particular format.
» The scanf() function Is used to input data in a formatted manner.



MANAGING INPUT AND OUTPUT
OPERATIONS
Formatted Input

=scanf() function is used to give data to the variable using keyboard.
= Used to Input data in a formatted manner.
Syntax:

scanf( “‘control string ”, &variablel, &variable2....&variable n);

In C to represent an address of any location an ampersand (&) Is used.

v Control string === Specifies the field format in which the vales of variable
are to be stored. Each format must be preceded by %

v'Variable — Specify the address of location where the data Is stored.
Variables separated by commas.

= Control string also known as format string.

= Control string contains field specifications.



MANAGING INPUT AND OUTPUT

OPERATIONS
Formatted Input

It may include:

» The conversion character %,

»a data type character (or type specifier)

» An optional number specifying the field width.
= Blanks, tabs, or newlines.

= The data type character indicates the type of data that Is to be assigned to
the variable.

= The field width specifier is optional.



MANAGING INPUT AND OUTPUT

OPERATIONS
Formatted Input

Format specifiers.

%d, %i Signed decimal integer

%X, ToX Uns:gned hexadecimal integer (without leadmg 0x)

%0  Unsigned octal integer (without leading 0)

7%c  Single character

1
2
3
4 %u  Unsigned decimal integer
5
6

R L T

e et e R T

8 %e 7%E Real number in exponential notation

9 %a %G Real number either f-type or e-type depending on
°d: % the length of the value without insignificant zero

B e - - —-om D Lt

10 %% %




MANAGING INPUT AND OUTPUT

OPERATIONS
Formatted Input

Formatting integer numbers:

The field specification for reading an integer number is: %wd
»The %sign - A conversion specification follows.

»W == Specifies the field width of the number to be read.

»>d d—» Specifies data type, indicates that the number to be read is in integer
mode.

Example:

scanf(“%2d, &numl);

This statement Is used to read an integer data of width 2.
Input: 45678

numl will be assigned 45 (because of %2d).



MANAGING INPUT AND OUTPUT
OPERATIONS
Formatted Input

Formatting integer numbers:

Example:

scanf(“%d”, &numl);

This statement Is used to reads an integer data and assigns to variable num1.
Input: 45678

numl will be assigned 45678



MANAGING INPUT AND OUTPUT

OPERATIONS
Formatted Input

Inputting Real numbers:

Example:
scanf(“%f , &numl);

Thislstatement IS used to reads a floating point data and assigns to variable
numl.

Input: 45.6/8
numl will be assigned 45.678

Inputting Character Strings:



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input
Inputting character strings:
%ws or %wc
Example:
scanf(‘“%4s”, &name);
This statement Is used to reads a string of data and assigns to variable name.
Input: good
name will be assigned good.
Example:
scanf(“%c”,&name);
This statement Is used to reads a single character of data and assigns to variable name.
Input: a
Name will be assigned a.



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input
Reading Mixed data type:
Use one scanf() statement to input a data line containing mixed mode data.
Example:
scanf(“%d %c %f %s”, &count, &code, &ratio, &name);
Input: 20 a 5.46 world



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input

Example Program:
#include<stdio.h>
Int main()

{

Int nUM:;
float value;

char ch;

char name|[8];

printf(“Enter the values”);

scanf(*“%d %f %c %s”, &num , &value, &ch, &name);
printf(“Entered %d and %f and %c and %s”, num, value, ch, name);

return O;
1



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Input

Example Program:
Input : 55 78.656 a computer
Output: Entered 55 and 78.656 and a and computer



MANAGING INPUT AND OUTPUT OPERATIONS

Formatted Output
printf() statement is used to display the result on screen.
Syntax:

printf( “control string ”, variablel, varible2....variable n);
Control String consists of three types of items:
» Characters that will be printed on the screen as they appear.

»Format specifications that define the output format for display of
each item.

» Escape sequence characters such as \n, \t and \b.



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:
#include<stdio.h>

Void main()

{

Int num; /*Declaration™/

num = 10; /*Initialization™/ (Compile time initialization)
printf(““%d”, num);

¥



MANAGING INPUT AND OUTPUT OPERATIONS
Formatted Output

Example Program:
#include<stdio.h>

Void main()
{

Int num; /*Declaration™/
scanf(“%d”, &num); /*Initialization*/ (Run time initialization)
printf(““%d”, num);

}



MANAGING INPUT AND OUTPUT
OPERATIONS

Formatted Output

type | _meaning

d, 1 integer printf("%d", 10); /* prints 10 */
X, X integer(hex) printf(“%x", 10); /* prints Oxa */
U  unsigned integer printf(*%u”, 10); /* prints 10 */
C character printf("%c", 'A); /* prints A */
S string printf("%s", “hello”); /* prints hello */
f float printf(“%f", 2.3); /* prints 2.3 */
d double printf("%d”, 2.3); /* prints 2.3 */
e E float(exp) 1e3, 1.2E3, 1E-3

% literal % printf(*%d" %%, 10); /* prints 10% */



FLOW CHARTS
Flowchart

= Flowchart is a graphical representation of an algorithm.

problem.

=1t makes use of symbols which are connected among them to
Indicate the flow of Information and processing.

=Lines and arrows shows the sequence of the steps, and the
relationships among them.



Flowchart Symbols FLOW CHARTS

There are 6 basic symbols commonly used in flowcharting:
1.Terminal

2.Process

3.input/output

4.Decision

5.Connector

6.Predefined Process

Common Flowchart symbols:

Rectangle Shape — Represents a process
Oval Shape — Represents the start and end
Diamond Shape — Represents a decision
Parallelogram — Represents input/output



Flowchart

FLOW CHARTS

Svmhbol

MName

Function

Process

Indicates any type of internal
operation inside the Processor
or Memory

input/output

Used for anyv Input / Output
(LY'O) operation. Indicates that
the computer 1s to obtain data

or output results

Used to ask a question that can

Decision be answered 1in a binary
format (Y es/INo, True/False)
Allows the flowchart to be
drawn without intersecting
Connector

lmes or wathout a reverse
flowr

Predefined Process

UUsed to mmvoke a subroutine or
an Intermupt program._

Terminal

Indicates the starting or ending
of the program_ process. or

intermpt prograin

Flow Lines

Shows direction of flow.




DECISION MAKING AND BRANCHING

Decision making statement:

The decision making statements are:

=Simple if statement

=|f....else statement

=Nested If...else statement

=Else if ladder

=Switch statement

=Conditional operator statement

=(Goto statement

These statements are known as decision-making statements.

These statements ‘control’ the flow of execution they are also known as
control statements.



DECISION MAKING AND BRANCHING

Decision making statement:

Decision making statements are used to skip or execute a group of
statements based on the results of some condition.

START I

Y.
Read User
Input

| /»Making Decision

Condition Satisfied ‘ ‘m \ Condition not Satisfied

|False]

[True] ) Branching &

Perform Some Perform Some
Tasks Other Tasks

/1 | \

M. M.

Branch 1 Branch 2
Show Result

I




DECISION MAKING AND BRANCHING
Decision making with simple if statement:

The If statement i1s used to control the flow of execution of
statements.

If statement execute or skip one statement or group of
statements for a particular condition.

General form:
If(text condition)

{

statement block:

}

next statement;



DECISION MAKING AND BRANCHING
Decision making with simple if statement:

False

execute if statements block

Next statement <

»\When this statement is executed, the computer first evaluates
the value of the test condition.

> If the value is true statement block and next statement are
executed sequentially.

> It the value Is false, statement block Is skipped and execution
starts from the next statement.



DECISION MAKING AND BRANCHING
Decision making with simple if statement:

Rules:
v'The brackets around the test condition are must.
v'Test condition must be relational or logical expression.

v'Statement Dblock is called body of the if statement and it
contains one or more statements.

v"The opening and closed brackets {} are must if the statement
block contains more than one statement. Else optional.



DECISION MAKING WITH SIMPLE IF STATEMENT:

Example Program: if(grade=="A)
#include<stdio.h> {

Void main() mark=mark+10:

1 }

int mark; printf(‘“%d”, mark);
char grade; }

scanf(“%d %c”, &mark, &grade);



